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Influenza Vaccination Campaigns:  
Is an Ounce of Prevention Worth a Pound of Cure? †

By Courtney J. Ward*

This paper estimates the overall impact and externality effects of 
an influenza vaccination program expanding coverage outside the 
typical target group. Using a triple-difference design, which exploits 
the introduction of a broad based vaccination program in Ontario 
and the quality of the vaccine from year to year, I link higher 
vaccination to health improvements. Results indicate coverage 
expansion leads to large excess gains for program-regions; benefits 
exhibit decreasing returns corresponding to a standard model of 
disease dynamics; and substantial external benefits accrue to older 
adults. (JEL H75, I12, I18)

Policymakers often use evidence on the effectiveness of vaccines to set vac-
cine recommendations and to design health programs. However, this evi-

dence does not generally attend to the externality effects inherent in vaccine use, 
which are relevant to both optimal policy response and estimation issues. To 
address key aspects of externalities in vaccination, this paper estimates the over-
all impact and externality benefits of a broad scope vaccination program expand-
ing coverage outside the typical target group. The Ontario Universal Influenza 
Immunization Campaign (UIIC) was one of the first programs to both recom-
mend and subsidize the influenza vaccine for all. Corresponding to traditional 
recommendations, the policy prior to 2000 included only high-risk groups, such 
as those over 65 and those with chronic conditions. While recommending vacci-
nation outside traditional groups continues to be controversial, current evidence 
on vaccine effectiveness tends to ignore relevant features, such as the magnitude 
of externalities, whether benefits depend on baseline immunization levels, and 
how heterogeneity in efficacy can further amplify (or temper)  externality effects. 
Furthermore, perception of these externalities may account for the broad array of 
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recent policy responses in the face of looming disease epidemics, which often do 
not accord with existing recommendations.1

Such concerns over impending seasonal epidemics are justified. Influenza is the 
sixth leading cause of death among adults, killing as many as breast cancer and 
three times as many as HIV/AIDS in the United States annually (Thompson et al. 
2003, 2004; Poland, Tosh, and Jacobson 2005; World Health Organization (WHO) 
2006). Given medical care costs alone, it is not surprising that public health offi-
cials emphasize vaccination as a way to mitigate these costs and, hence, focus these 
efforts on the elderly, where mortality risk is highest. At the same time, children 
are the highest risk for infection (Fiore et al. 2010), and while influenza is linked to 
mortality more directly, early infection may lead to longer term disability and worse 
educational outcomes later in life (Almond and Mazumder 2005; Almond 2006).

By focusing on a broad-based program expanding coverage to children and 
younger adults, this study addresses the limitation of previous evidence by assess-
ing excess gains from vaccination, showing that higher efficacy rates in the young 
can lead to externality benefits for the old, and showing that overall gains decline to 
exhaustion depending on baseline immunization levels. Since a simple before and 
after comparison for UIIC regions may incorrectly attribute all changes in health to 
the program and even conventional difference-in-differences comparisons with non-
UIIC regions may be confounded with differential trends, the analysis, instead, relies 
on variation in the quality of the influenza vaccine. Because this variation is based 
on the degree to which the vaccine relates to the influenza virus each year, it can be 
considered as exogenous to the decision to vaccinate. For instance, while the genetic 
composition of influenza is constantly changing, the composition of the vaccine is 
predetermined and fixed for each flu season and across North America. This implies 
that if there are benefits from vaccination, UIIC regions will have much to gain when 
the vaccine is a good match, whereas they will have little to gain when it is not.

The analysis proceeds by combining survey and administrative data to construct 
weekly measures of work absences, hospital admissions, and influenza surveillance 
for sub-provincial regions over an 11-year period, which allows for flexible specifica-
tions including season, month, and region fixed effects. Using these data, the analysis 
informs five main sets of results. First, the overall program effect is  sizable. During the 
epidemic period and when the vaccine is well matched, there is a 48 percent decrease 

1 For instance, the recommendations of the US Advisory Committee on Immunization Practices (ACIP) prior 
to 2008 were set for the standard “high-risk” groups (Fiore et al. 2007). In 2008, the ACIP expanded recommenda-
tions to include children under 18, but did not include ages 19–64, stating that “economic analysis among adults 
aged <65 have reported mixed results regarding influenza vaccination” (Fiore et al. 2008). Meanwhile, the threat of 
influenza H1N1 in 2009 led to rapid and varying policy responses. At the local level, some states and/or employers 
went as far as mandating vaccination (http://www.cdc.gov/h1n1flu/vaccination/acip.htm), and at the time, the offi-
cial position of the ACIP was: “that as many people as possible receive 2009 H1N1 vaccine as quickly as possible” 
(http://www.cdc.gov/h1n1flu/cdcresponse.htm). Following the 2009 H1N1 pandemic response, the ACIP maintains 
that evidence for the cost effectiveness of the seasonal influenza vaccine for adults aged <65 remains mixed, but it 
has adopted the policy of recommending the seasonal influenza vaccine to all groups older than six months (Fiore 
et al. 2010; CDC 2011, 2012). In Canada, the National Advisory Committee on Immunization (NACI) currently 
recommends the vaccine to typical target groups, whereas remaining groups ages 5–64 are only “encouraged” to 
vaccinate pending further review (NACI 2012). Meanwhile, five provinces currently operate universal coverage 
programs for the influenza vaccine, while the other provinces retain targeted coverage. In the United Kingdom, 
the National Health Service continues to limit vaccine coverage to the standard target groups (http://www.nhs.uk/
Conditions/vaccinations/Pages/who-should-have-flu-vaccine.aspx).

http://www.cdc.gov/h1n1flu/vaccination/acip.htm
http://www.cdc.gov/h1n1flu/cdcresponse.htm
http://www.nhs.uk/Conditions/vaccinations/Pages/who-should-have-flu-vaccine.aspx
http://www.nhs.uk/Conditions/vaccinations/Pages/who-should-have-flu-vaccine.aspx
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in influenza-pneumonia admissions, a 14 percent decrease in work absenteeism, and 
a decrease in the rate of influenza-pneumonia deaths of 9 per 100,000. On the other 
hand, there is little effect for any of these measures in the nonepidemic period and little 
effect for nonrespiratory admissions in any period. Second, for those over 65, cover-
age status and, likewise, relative vaccination remained unchanged in UIIC regions 
post program. Even so, this group experienced substantial decreases in respiratory 
admissions and death. Third, estimated excess benefits for all age groups are large. 
A benchmark estimate of the decrease in infections under a high match is 92 per-
cent while the size of the decrease in the unvaccinated population is only 11 percent. 
Fourth, corresponding to the predictions of a standard theoretical model of influenza 
dynamics, the results show that these gains would fall to zero at vaccination rates 
above the mid-30’s (this result considers the case of a well matched vaccine which 
occurs in one out of every 2.2 seasons). Finally, the implied aggregate benefits of the 
program, including spillover benefits to older adults, are substantial relative to pro-
gram costs. Considering only hospitalization and productivity losses, the impact of 
the vaccine campaign translates into best-case scenario cost savings of $241 million in 
a high match season or expected savings of $171 million in an average match season. 
Meanwhile program costs are about $33 million annually.

The rest of the paper proceeds as follows. Section I provides background infor-
mation on the influenza virus and influenza vaccines. Section II outlines the iden-
tification strategy. Section III describes the data and presents descriptive statistics.
Section IV presents results and interpretation and Section V concludes.

I. Background

A. Influenza, Vaccine Efficacy, and Vaccination Programs

Each year almost 1 out of every 10,000 Americans die from influenza and its com-
plications. For those over 65, this number is 1 in 20. For those aged 18 to 64, influenza 
is responsible for an average 75 million days of work absenteeism, and 22 million 
health care provider visits annually (Benson and Marano 1998; Thompson, et al. 
2003, 2004; Poland, Tosh, and Jacobson 2005; Fiore et al. 2010). Research has also 
linked early influenza infection to added long-term effects. For instance, children 
in utero during the 1918 H1N1 influenza pandemic displayed increased rates of 
physical disability, and decreases in income and educational attainment later in life 
(Almond and Mazumder 2005; Almond 2006).

The disease itself, is contagious through droplet spread, with contagion risk 
beginning prior to the onset of symptoms and continuing for a number of days after 
recovery.2 The leading defense against influenza is vaccination, which provides 

2 The acute effects of influenza can last from 3 to 14 days (Fiore et al. 2010; PHAC 2006). In addition, the virus 
can stay virulent on surfaces for a varying length of time. At body temperature, the virus is usually inactivated in 
less than a week, whereas in cool dry temperatures the virus can last considerably longer (Zhang et al. 2006). This 
is, in part, the reason why seasonal epidemics appear during winter months (WHO 2003). Further information on 
influenza and vaccination is available from the US Centers for Disease Control and Prevention (http://www.cdc.
gov/flu/about/disease/index.htm) or the Canadian Immunization Guide published by the Public Health Agency of 
Canada (http://www.phac-aspc.gc.ca/publicat/cig-gci/index-eng.php).

http://www.cdc.gov/flu/about/disease/index.htm
http://www.cdc.gov/flu/about/disease/index.htm
http://www.phac-aspc.gc.ca/publicat/cig-gci/index-eng.php
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protection from infection by triggering an antibody producing immune response to 
targeted influenza strains. This means that vaccine efficacy depends on the immune 
response of the recipient, which is compromised if antibody levels are too low (Fiore 
et al. 2010). For instance, systematic review indicates efficacy rates in healthy adults 
of 80 percent, while the results for children and older ages are lower: 62 percent 
for children, and 58 percent for adults over 65 (Govaert et al. 1994; Jefferson et 
al. 2007; Manzoli et al. 2007). Furthermore, due to antigenic drift in the influenza 
virus, seasonal protection also depends on the match of vaccine strains to circulat-
ing strains of influenza.3 For instance, in a systematic review, Jefferson et al. (2007) 
note lower effectiveness in studies taking place in seasons where the vaccine is not 
well matched to circulating strains.

Due to constant genetic change in the influenza virus and the relevance of vaccine 
match to efficacy, the vaccine is reformulated each year to account for changes in 
the antigenic composition of influenza strains. WHO monitors circulating influenza 
viruses and in early spring writes the annual vaccine recipe. The vaccine includes 
two subtypes of influenza A (H3N2 and H1N1) and one influenza B virus. Usually, 
one or two of the three virus strains in the vaccine are changed each year and the pre-
scription is identical across the North American continent (WHO 2003). In Canada, 
Health Canada licenses the newly formulated inactivated vaccine each year, and once 
licensed Public Works and Government Services Canada purchases influenza vac-
cines on behalf of the provinces for distribution in late October early November.4 The 
turn around period from the yearly WHO recommendation to availability is around 
six to eight months depending on manufacturing conditions (Health Canada 2007).

Beginning in the early 1990s, all Canadian provinces developed programs cover-
ing the cost of vaccination for specific “high-risk” groups. The standard covered 
group included recipients less than 24 months, older than 65 years, health care 
support staff, residents in care homes, and those with specific chronic conditions 
(Johansen et al. 2004).5 Aside from minor changes to provincial programs, and with 
the exception of Ontario, vaccine targeting remained the same across all provinces 
for the next two decades. In July of 2000, the Government of Ontario announced 
the extension of vaccination coverage to all residents of the province through the 
Universal Influenza Immunization Campaign (MOHLC 2000). The campaign was 
initiated as part of a larger ten point plan to address emergency room overcrowd-
ing, which highlighted general resource constraints rather than, specifically, a high 
influenza burden (for instance, influenza admission rates and surveillance rates were 
marginally lower in Ontario relative to other provinces) (Kurji 2004). In its first 

3 Specifically, the genetic structure of the virus is constantly changing over time through point mutations, which 
leads to different strains of the virus that are genetically differentiated on the basis of surface antigens. Antigenic 
drift in the influenza virus can mean, depending on antigenic changes, minimal cross-immunity for any new strain 
(PHAC 2006).

4 Administrative data from Ontario OHIP physician billings show that the majority of yearly vaccination takes 
place before December (Kwong and Manuel 2007). Similarly, survey data from the US (NCHS 2008) show that 
91 percent of vaccinated respondents had received the current influenza vaccine by December.

5 Conditions include cardiac or pulmonary disease, asthma, diabetes, renal disease, liver disease, anaemia, HIV, 
and cancer.
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year, the program cost $31 million with 2.1 million additional vaccines delivered 
(Kurji 2004).6

B. Externalities and the Literature on Vaccine Effectiveness

Policies for annual universal vaccination, such as UIIC, go against traditional vac-
cine recommendations. For instance, based on meta-analysis of several randomized 
evaluations, Demicheli (2001) claims that benefits from vaccinating healthy adults 
are small and “at odds with the conclusions reported in previous meta-analysis of 
evidence for the effect of immunization on elderly people, which showed greater 
clinical effectiveness, thus supporting the present worldwide policy of vaccinating 
only elderly people and other high-risk groups.” Further to this, more recent surveys 
indicate that evidence on the effectiveness of vaccinating healthy adults continues 
to be mixed with no uniform prescription on the validity of recommending vaccina-
tion for these groups (Nichol 2001, 2003, 2008; Fiore et al. 2007, 2008, 2009, 2010; 
CDC 2011, 2012).

However, externalities in vaccination can complicate this evidence in at least two 
important ways: first in estimation and second in socially optimal policy setting. For 
instance, vaccine recommendations are largely based on evidence from random-
ized control trials (see Fiore et al. 2010 for a complete review), which may yield 
undervalued results depending on the degree of external spillovers in each context. 
Specifically, studies often randomize vaccination within a chosen sample, compare 
outcomes across treatment and control, but fail to deal with external benefits for the 
untreated group that accrue from vaccination of the treated (which may be large if the 
sample is chosen from, for instance, a specific locale or workplace).7 Furthermore, 
population externalities can lead to differential returns to treatment conditional 
on underlying vaccination characteristics, which can yield diverse results across 
study context depending on the degree of local vaccination and compositional take-
up.8 For social planners, not only are estimates of vaccine effectiveness potentially 
undervalued due to externalities, the evidence provides little direction for the size 
of externalities or how they relate to issues of compositional take-up or differen-
tial returns.9 On the other hand, information on these relationships is valuable for 

6 Overall, the total program cost is a small portion of the health care budget of more than $30 billion annually. 
Furthermore, program funding is independent of hospital and physician budgets, which are determined separately 
through funding formulas and negotiations with the Ontario Medical Association. Since coincident policies for 
general emergency room overcrowding likely have implications for hospital admission, the analysis on hospitaliza-
tions controls for changes in resources devoted to other aspects of the public health care system. As discussed below 
and formally in Section III, there is still cause for concern in attributing simple post-UIIC difference-in-differences 
estimates as due to the UIIC program alone.

7 This difficulty has been shown in other contexts. See, for instance Philipson (2000a) for a general discus-
sion and Miguel and Kremer (2004) for a discussion within the context of intestinal helminthes and deworming 
interventions.

8 Externalities are not the only challenge facing evidence from randomized evaluations. Since these studies typi-
cally isolate only one flu season, they cannot adequately account for the role of the influenza vaccine match, which 
impacts the estimated benefits of vaccination systematically.

9 Furthermore, since composition and level of vaccination in the underlying population varies across study 
context and season, this will have implications for estimated effectiveness even where within-study estimation 
spillovers are not an issue. For example, each evaluation typically involves a small sample, representing a specific 
group, within a specific context, observed over one flu season; it then remains unclear how well these results can be 
combined to inform a broad-based vaccination policy for a more generalized population. Take the following case 
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 governments, firms, or health agencies wanting to design policies that exhaust exter-
nal net-benefits of prevention, and as the analysis will show, externalities can have 
meaningful implications for both estimation and policy design.10

II. Identification Strategy

The purpose of the empirical work is to study the links between immunization 
and health by identifying the impact of vaccination as delivered through a broad 
scope program. To start, the following model links underlying vaccination to health 
(broadly defined) with linear and homogenous effects in vaccination:11

(1)  h jt  = α + β  m jt   v jt  +  ε jt  .

Here, hjt is a health measure for region j at time t; mjt reflects vaccine quality and is 
measured as the match rate between the vaccine and circulating influenza strains; 
vjt is the vaccination rate; and εjt is the error term. Both own and external effects of 
vaccination are subsumed in β, which represents the total effect of changes in aver-
age vaccination, scaled by vaccine quality, in region j at time t.12

Because β captures both the individual and external effects of vaccination, 
its magnitude is of interest to policymakers hoping to recoup societal benefits 
through increased vaccination rates. However, estimation of β using variation in 
vaccination rates presents a number of potential challenges. First, while higher 
vaccination rates may lead to better health, it may also be the case that poor 
health leads to higher vaccination rates. This association between poor health and 
take-up of vaccination may mitigate the estimated relationship described by β 

abstracting from all but the issue of compositional take-up, and consider a randomized evaluation for two groups: 
those under 65 and those over 65. First, on a theoretical basis, vaccination for those under 65 versus those over 65 
could lead to knock on compositional effects if different efficacy rates among the young impact externality benefits 
for the old (e.g., policies targeting the younger group may lead to higher gains for both groups versus the alterna-
tive scenario). However, where evaluations are context specific, considered in isolation, and do not reflect on these 
spillovers, they will remain silent on this issue. Second, within age group, randomized versus optional take-up may 
lead to different effects if factors (such as health) are related to decisions to vaccinate and to costs of infection (e.g., 
under optional take-up, those with higher expected health gains may be the first to vaccinate, and while selection of 
this sort would be desirable to the policymaker, each evaluation is unable to reflect on this effect). In general, assess-
ments of evidence from randomized evaluation for specific groups will not be able to address these larger issues of 
compositional take-up, knock on effects, or the related issue of differential returns to vaccination.

10 Policies designed to recoup social benefits could be warranted if private action fails to exhaust all external net 
benefits of prevention. Furthermore, for the case of vaccination, this gap may be even larger if, for instance, health 
coverage is offered for treatment of disease versus disease prevention, thereby distorting the relative price for pre-
ventative care and lessening the incentive to prevent illness. However, even where health authorities consider only 
private benefits in setting vaccine recommendations, the estimation issues highlighted above may still confound 
these objectives.

11 While the assumptions of linearity and homogeneity are likely too restrictive in the current context, the fol-
lowing is used as a baseline model to describe core estimation issues before exploring the implications of nonlinear-
ity and heterogeneity.

12 Here, β is a function of the individual and external effects of vaccination obtained from an individual model:

 h i j t  = α + δ m j t   v i j t  + γ  m j t   v (i)j t   ε j t  .

In the individual model, the coefficient δ captures the individual effect of vaccination (denoted  v ijt ) from person 
i’s vaccination decision, and the coefficient γ captures the effect of average vaccination excluding person i (denoted  
v (i)j  t ). In other words, it is the external effect of vaccination on the illness of person i arising from the vaccination 
behavior of others. The total effect of vaccination is recoverable when averaging the individual model over region 
and time.
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and would bias estimates of the effect of vaccination downward.13 Additionally, 
there may be other factors that contribute to region-by-year variation in vac-
cination rates. For example, variation in incidence of other infectious diseases 
(colds, other respiratory viruses, et cetera) may be correlated with selection into 
vaccination and also associated with health outcomes. In this case, the positive 
association between vaccination and health would be mitigated by this corre-
lated effect. Lastly, vaccination, itself, may be associated with other behaviors 
that affect health. For instance, hand washing or other prevention methods may 
increase after receiving the vaccine. If, for instance, a higher vaccination rate 
is associated with increased exposure to prevention information and increased 
prevention behaviors, then rates of illness may be lower regardless of receipt of 
the shot. If such an effect is not delivered through vaccination itself, but instead 
through an advertising effect regarding the upcoming flu season, this has separate 
implications for policy, especially considering the inoculation costs of vaccina-
tion, in addition to the costs of time loss and personal discomfort.

In the present study, there are several factors that contribute to identification of the 
effect of a broad scope immunization program. The first factor is time-region varia-
tion in a program that provides vaccines free of charge to all age groups. The second 
factor is that in different years and across provinces, there are different degrees of 
match between the vaccine and influenza. Furthermore, these mismatches are deter-
mined by random mutations in influenza as they relate to yearly vaccine content, 
which is predetermined and fixed across North America and over each year. This 
means that, unknown to the recipient at the time of vaccination, the vaccine may 
offer a high degree of protection or it may offer a marginal degree of protection. 
Accordingly, areas with higher levels of vaccination will experience greater benefits 
if the vaccine is a good match and smaller benefits when it is not.

These elements combined form the basis for disentangling differential changes 
in health from the causal impact of the immunization program. For instance, 
aspects such as underlying differences in labor conditions, the supply of hospital 
services, and sentiment toward prevention behavior may evolve differentially over 
time and across region. Without considering the impact of these alternate, often 
unobservable, drivers of health, estimates of the value of immunization program-
ming can be either undervalued or overvalued depending on these underlying fac-
tors.14 Given that results are sensitive to these underlying factors, the  methodology 

13 In fact, the data show that this is a probable concern. Comparing vaccinated and unvaccinated groups; the data 
show a counterintuitive connection between vaccination and health during the nonepidemic period where the vac-
cine is unlikely to causally impact health. Specifically, in the summer months where influenza is not in circulation, 
the rate of recent short-term illness is 16 percent higher for vaccinated versus unvaccinated individuals. This finding 
likely demonstrates selection into vaccination where those in poorer health or with higher infection probabilities are 
more likely to vaccinate, but are also more likely to experience negative health shocks.

14 For instance, Groll and Thompson (2006) find that there is a small relative increase in surveillance counts of 
laboratory-confirmed influenza for Ontario compared to other provinces at the introduction of the universal pro-
gram. This result is likely explained by the steeper upward trend in testing in Ontario relative to the other provinces. 
Meanwhile, Kwong (2005), using time variation in hospital counts, finds little relative impact for influenza hospital-
ization for Ontario post-program. Alternatively, using a similar methodology, but extending the yearly time series, 
Kwong et al. (2008) find relative decreases in death, hospitalization, and emergency room visits at the introduction 
of the campaign. These results could be explained by differential trends in health resources that widen over time. 
For instance, over this period, the number of nonrespiratory admissions declined by 1.5 percent per year in Ontario, 
but did not change for the other provinces.
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used here explicitly controls for agnostic differences in health accruing to UIIC 
regions post-program and identifies the impact of vaccination by using exogenous 
variation in vaccine quality:

(2)  y   j t  =  β 1 (UII C p  × Pos t y  ×  m py )

  +  β 2 (UII C p  × Pos t y ) +  β 3 (Pos t y  ×  m py ) +  β 4 (UII C p  ×  m py )

  +  X  jt  ′   Π +  u jt 

where yjt is an illness outcome for region j at week t.15 On the right hand side UII C p   
is an indicator for regions in Ontario; Pos t y  is an indicator for seasons after 2000; 
and  m py  is the clinical match rate (ratio of vaccine-matched strains to total number 
of tested strains) in province p in season y.16 The vector  X j t  is a set of controls for: 
public health expenditures on health care (hospitals, capital, physicians and other 
health professionals); diagnosis specific coding changes from ICD9 to ICD10; the 
match rate in levels; and region, season and month fixed effects.17 The variable ujt is 
an error term clustered at the region level to account for both serial correlation and 
correlated random shocks within region and season.

Inclusion of region effects captures fixed features among economic-regions, and 
will account for unobservable region differences that are common across all seasons. 
Similarly, by controlling for season fixed effects, the model accounts for any fixed 
differences across seasons common to all regions. Finally, the coefficient β2 directly 
captures unobservable post-period differences in health accruing to UIIC regions.

The model also includes careful accounting for the baseline effects of the vac-
cine match to allow for the possibility that, among strains of differing severity, 
the vaccine selection process gives rise to a direct relationship between illness 
outcomes and the match rate (i.e., regardless of vaccination).18 For instance, if 
more probable strains are also more severe and vaccine strains are chosen based 
on expected severity, then the choice is more likely to generate a match when 
the upcoming influenza strain is more severe.19 On the other hand, this process 

15 Regions are subprovincial and defined according to the geographic classification used by Statistics Canada. 
These “economic regions” are made up of adjacent census divisions meant to characterize regional economic activ-
ity. There are 73 economic regions in Canada, and after dropping the missing regions in Quebec and non-Winnipeg 
Manitoba, the total comes to 49.

16 Specifically, the clinical match rate is calculated as the proportion of strains tested by the PHAC in each prov-
ince and season that are matched (i.e., have cross immunity) with vaccine strains specified in that season:

 m py  =   
number of flu tests in p, y that match vaccine strains selected in y

      _____    
number of flu tests in p, y

   .

17 Where labor force survey data is used, the unit of analysis is at the individual-region-week level, and addi-
tional controls include age, education, occupation, marital status, and union status.

18 For more information on selection see: http://www.cdc.gov/flu/about/qa/vaccine-selection.htm (access Dec 
21, 2012) or http://www.who.int/influenza/vaccines/virus/recommendations/en/index.html (access Dec 21, 2012).

19 More specifically, suppose the WHO’s choice of vaccine strains is driven by point-in-time forecasts of the 
future harm of circulating strains, where harm is informed by both the predicted severity of each strain and the 
perceived probability that each strain will appear. Consider the case where more probable strains are also more 
severe and the WHO chooses based on expected severity. Here, the choice more often leads to a good match when 
the upcoming influenza strain is more severe. This will drive a relationship between the match and the severity of 
the flu season regardless of vaccination (e.g., in the case where no one is vaccinated, a “would be match” is more 
likely to occur in a more severe flu season).

http://www.cdc.gov/flu/about/qa/vaccine-selection.htm
http://www.who.int/influenza/vaccines/virus/recommendations/en/index.html
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relies on accurate  forecasting of strain likelihood and severity in early spring, and 
selection relies on known strains at that time. Meanwhile, new strain threats may 
occur while manufacturing is underway or complete. In short, it may be difficult 
to operate a policy to maximize the “true” cost of future strains, since information 
is restricted to speculative apriori probabilities of known strains. It is more likely 
that the observed empirical relationship between the clinical match rate and health 
operates through vaccination behavior. That is, when a matched strain appears, the 
vaccinated will enjoy a higher degree of protection from influenza relative to the 
unvaccinated, whereas when an unmatched strain appears, both the vaccinated and 
unvaccinated remain susceptible.20

Because the relationship between the match and strain severity is not directly 
testable, the empirical strategy is structured to explicitly account for this possibil-
ity. First, the model includes the vaccine match in level form to control for the 
direct effect of the vaccine match on illness. Second, the coefficient β3 captures dif-
ferences in the effect of the vaccine match post-2000 and hence controls for gains 
in the effect of the match that are common to all regions. Finally, the coefficient β4 
captures baseline differences in the effect of the match that are different in UIIC 
versus non-UIIC regions (i.e., regions may be differentially impacted by a higher 

20 While a direct effect of the match on the decision to vaccinate would have implications for this relationship, 
evidence indicates the match rate shows little predictive power for vaccination behavior. For instance, Table 1 
presents results on the estimated impact of the match rate on vaccination status. Results indicate that there is little 
relationship between the current yearly match rate and current vaccination status, both overall and for the subgroups 
shown. In general, the estimated effect of a 1 percentage point increase in the match rate is associated with a statisti-
cally insignificant 0.0015 percentage point decrease in the likelihood of vaccination. Furthermore, last year’s match 
rate shows little predictive power for current vaccination.

Table 1—Current Influenza Vaccination Status and the Clinical Vaccine Match Rate

Interaction for subgroup

Overall Age 65+

Poor self 
rated 
health

Chronic 
condition Worker

Current match −0.0015 −0.0010 0.0068 0.0001 0.0094 0.0118
(0.0156) (0.0167) (0.0183) (0.0184) (0.0179) (0.0312)

Lagged match 0.0015
(0.0155)

Current match × subgroup −0.0220 −0.0002 −0.0298 0.0102
(0.0381) (0.0378) (0.0291) (0.0387)

Notes: This table reports OLS estimates of the effect of the clinical match rate on current vaccination status. Each 
set of estimates shown in columns 1 to 6 represents a separate regression. Standard errors are given in parentheses 
and are clustered by economic region. Columns 3 to 6 include interactions of the current match with the subgroup 
listed in the table heading. Age 65+ is an indicator for age greater than or equal to 65. Poor self-rated health is an 
indicator of self-rated health equal to “poor” or “fair.” Chronic condition indicates the presence of one of the follow-
ing chronic conditions: Asthma, Heart Disease, High Blood Pressure, Diabetes, Cancer, or Emphysema/Chronic 
Bronchitis. Worker indicates that the respondent worked at a job or business in the last year. All regressions are 
weighted by survey weight and include province and year fixed effects.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations, PHAC surveillance reports, and the master files of NPHS cycle 2 and CCHS 1.1, 2.1, 3.1.
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match even though vaccine composition each year is identical across all regions). 
Consequently, this methodology disentangles the relative change in the effect of 
the vaccine match that accrues to UIIC regions post-adoption. Specifically, β1 
summarizes the post-period difference in the effect of the match for UIIC regions, 
and captures the gain in health in good match years that is explained by increased 
vaccination from the program.

A. Decreasing Returns

The research design in equation (2) can be modified to capture decreasing 
returns to vaccination, which necessarily occur if externality benefits decline as 
vaccination levels rise. To address this aspect of vaccination programming, the 
model exploits variability in baseline average vaccination across regions. Since 
there is little between-variation in the post-program vaccination change for UIIC 
regions, post-program levels are heavily influenced by baseline vaccination 
differences (as shown in Table 2). To assess the role that baseline vaccination 
plays in the overall effect of the vaccination campaign, the model in (2) is modi-
fied to include interactions between baseline vaccination and all innovations of  
UIIC, Post, and m:

(3) y   jt  =  β 1 [UII C p  × Pos t y  ×  m py ]

 +  δ 1 [UII C p  × Pos t y  ×  m py  × ( pre V j  −   
_
 preV   j )]

 + other interactions and controls +  ν jt  .

Here, preVj is the pre-2000 vaccination rate for region j, which is then demeaned 
by the overall average baseline vaccination rate. The coefficient β1 is interpreted as 
the program match effect at the average baseline level, whereas δ1 gives the change 
in the program match effect at higher baseline vaccination rates and estimates the 
degree to which decreasing returns impact program benefits. This strategy assumes 
that variability in baseline vaccination is related to post-program differences in 
health across good match and bad match years solely through decreasing returns to 
vaccination. Specifically, it assumes that the effect does not operate through unob-
servable characteristics among high and low regions that are otherwise related to 
future health outcomes. However, even if these unobservable factors are correlated 
with differences in baseline vaccination among regions, in order to explain results, 
such factors would also need to be related to future differences in health outcomes 
for UIIC regions, and differences in the way that UIIC regions persist through future 
good versus bad match flu seasons. Given that future vaccine matches are difficult to 
predict, that the vaccine is the same across North America, and that the program was 
largely unanticipated, the most likely explanation for UIIC regions with different 
baseline starting points to have different post-period changes in the effect of vaccine 
quality, is through decreasing returns to vaccination.
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III. Data and Descriptive Statistics

A. Vaccination

Health survey data from Statistics Canada are used to document the changes 
in vaccination. Four sequential health surveys contain questions relevant to influ-
enza vaccination in the master file data holdings maintained by Statistics Canada’s 
Research Data Centers. These are the National Population Health Survey (NPHS), 
Cycle 2 and the Canadian Community Health Survey (CCHS), Cycles 1.1, 2.1, 
and 3.1. Each survey is a national, population-based survey conducted on persons 
12 years of age or older. Information includes demographic, socioeconomic, and 
health information, and current and previous vaccination status. In each survey, the 
respondent is asked: “Have you ever had a flu shot?” following up with “When was 
your last flu shot?” Along with survey timing, this information is used to determine 
the vaccination status of individuals in the current flu season-year (using the con-
ventional definition of the season running from week 35 to week 34 of the following 
year).

Figure 1 shows vaccination rates for UIIC versus non-UIIC regions by age 
group over time. The figure shows that vaccination increased over 1996 to 2006 
for all age groups, and indicates that the young have lower vaccination rates than 
the old over the sample period. The figure also shows that, while baseline vaccina-
tion rates for the young are not substantially different for UIIC versus non-UIIC 
regions, there are significant gains at program introduction as indicated by the 
sustained 11  percentage point relative shift in vaccination. The same is not evi-
dent in the older age group, where there is no relative change in vaccination at the 
introduction of the program.
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Figure 1. Influenza Vaccination—1995/1996 to 2005/2006

Notes: The y-axis plots average vaccination for each season-year based on the master files of the 
National Population Health Survey Cycle 2 and the Canadian Community Health Survey Cycles 
1.1, 2.1, 3.1. Solid lines show the fitted linear prediction for each age and geographic grouping.
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To explore differences in program impact among subgroups, Table 2 gives a 
summary of vaccination rates pre- and post-September 2000. The table shows an 
increase in vaccination rates for all regions in the post period with a 20.9 percentage 
point increase in UIIC regions and a 12.2 percentage point increase in non-UIIC 
regions. In relative terms, there is an 8.7 percentage point relative increase in UIIC 
regions, solely due to the increase of 10.8 for those under 65. Figure 2 confirms 
these results over the age distribution, showing that while UIIC regions have higher 
baseline levels of vaccination over all age groups (and in particular for those greater 
than 65), the relative change post-2000 is due solely to those under 65. It is clear 
from these data that the impact of the program is centered on the age group that was 
targeted by program incentives.

To better understand the characteristics associated with baseline vaccination 
behavior and heterogeneity in take-up after the program, the remainder of Table 2 
presents summary statistics for ages under 65 by demographic group. As shown, 

Table 2— Influenza Vaccination Rates by Selected Characteristic

UIIC Non-UIIC
D-in-D 
change SDPre Post Change Pre Post Change

Full sample
Average vacc. rate 0.208 0.417 0.209 0.170 0.291 0.122 0.087 (0.023)
Between ER SD 0.021 0.032 0.017 0.018 0.031 0.019

Average rate by age group
Under 65 0.120 0.333 0.213 0.092 0.197 0.105 0.108 (0.023)
65 and over 0.609 0.737 0.128 0.521 0.645 0.124 0.004 (0.029)

Average rate by demographic characteristic and health status for under 65 group
Male 0.111 0.292 0.181 0.076 0.169 0.093 0.088 (0.021)
Female 0.128 0.369 0.241 0.107 0.222 0.115 0.127 (0.023)
No secondary graduation 0.167 0.338 0.172 0.103 0.168 0.065 0.106 (0.025)
Secondary graduation 0.101 0.308 0.207 0.075 0.162 0.087 0.120 (0.019)
Some post-secondary 0.100 0.290 0.190 0.093 0.171 0.079 0.111 (0.021)
Post-secondary graduation 0.113 0.346 0.233 0.097 0.231 0.135 0.098 (0.024)
Income <$30K 0.130 0.350 0.220 0.101 0.186 0.085 0.135 (0.021)
Income $30K–$50K 0.118 0.336 0.218 0.087 0.192 0.105 0.113 (0.022)
Income >$50K 0.109 0.324 0.215 0.085 0.205 0.120 0.095 (0.024)
Full-time worker 0.096 0.301 0.205 0.079 0.187 0.108 0.097 (0.021)
Part-time worker 0.112 0.342 0.230 0.087 0.188 0.101 0.129 (0.021)
Not in labor force 0.187 0.448 0.262 0.149 0.263 0.114 0.147 (0.023)
No chronic conditions 0.085 0.267 0.182 0.061 0.143 0.082 0.100 (0.020)
At least one condition 0.237 0.479 0.241 0.201 0.326 0.126 0.116 (0.028)
SRH: excellent/very good 0.095 0.302 0.207 0.072 0.174 0.102 0.105 (0.023)
SRH: good 0.138 0.356 0.217 0.103 0.209 0.106 0.112 (0.021)
SRH: fair/poor 0.256 0.455 0.199 0.213 0.304 0.091 0.107 (0.024)
Full sample observations 40,012 119,294 159,306 31,824 144,774 176,598 335,904

Notes: Vaccination rates for each subgroup are shown pre- and postprogram in UIIC and non-UIIC regions in 
Canada (excluding Quebec, rural Manitoba, and the Territories). Pre and post denote before and after September 
2000 with the difference-in-differences change in vaccination for UIIC regions displayed in the second last column 
(standard errors clustered by economic region (ER) are shown to the right of the estimate). The between ER stan-
dard deviation calculates the standard deviation of vaccination rates between economics regions within each pre-
post, UIIC-non-UIIC grouping. Chronic conditions include Asthma, Heart Disease, High Blood Pressure, Diabetes, 
Cancer, Emphysema/Chronic Bronchitis. SRH stands for self-rated health.

Source: Author calculations and the master files of NPHS cycle 2 and CCHS 1.1, 2.1, 3.1.
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baseline vaccination patterns fall in line with previous research on the determi-
nants of vaccination: females are more likely to vaccinate than males, vaccination 
increases with education (with the exception of those without secondary gradua-
tion), and decreases with time spent working (Mullahy 1999). Underlying health 
may play a part in explaining these patterns since health and socio-demographics are 
correlated, and the table shows that poor health is associated with higher vaccina-
tion rates. These baseline differences in vaccination will matter for overall program 
returns to the extent that immunity through vaccination varies by health status. For 
instance, if those in poor health have lower levels of vaccine efficacy then there may 
be room for the UIIC program to yield further external benefits for these groups.
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Figure 2. Influenza Vaccination Rates over Age

Notes: In the top panel, the y-axis plots average vaccination for each age group pre-2000. The bottom panel shows 
the change in vaccination in the preperiod versus postperiod. Rates are based on data from the master files of the 
National Population Health Survey Cycle 2 and the Canadian Community Health Survey Cycles 1.1, 2.1, 3.1.



www.manaraa.com

VOL. 6 NO. 1 51WARD: INFLUENZA IMMUNIZATION CAMPAIGNS

Focusing on heterogeneity in vaccine take-up after the universal campaign, the 
table shows that among those under 65, the relative increase in vaccination for UIIC 
regions is largest among females, those not in the labor force, and among those with 
lower income. The relative increase is of similar magnitude regardless of having 
a covered chronic condition and across levels of self-rated health. It appears that 
the UIIC led to larger increases among more financially vulnerable groups, poten-
tially ameliorating the gradient between SES and health. Overall, the most apparent 
source of heterogeneity is by age. Figure 2 confirms that, for those under 65, the 
highest degree of take-up is among the youngest and oldest groups.

B. Influenza Surveillance

Influenza surveillance data are used for two purposes in the analysis that fol-
lows. The first is to document the different influenza strains present in each season 
and province, and the second is to pinpoint the period in the year when influenza 
is circulating. In defining the epidemic period, results can be further delineated and 
used to verify that these benefits are delivered primarily when the threat of influenza 
is the greatest.21 This offers a further specification check since, in order to explain 
results, any alternative factor would have to have a differential impact in the epi-
demic period and occur solely in UIIC regions, weeks post September 2000, and 
years with a higher vaccine match.

The surveillance data for laboratory confirmed influenza are available from the 
PHAC through its respiratory surveillance program. These data consist of weekly 
tests collected from appointed sentinel physicians in each surveillance region, where 
each test is then confirmed for presence of influenza or other respiratory diseases. 
These data are presented graphically in Figure 3. The bottom panel gives the average 
laboratory confirmed surveillance rate (percent of collected tests that are positive 
for influenza) and indicates the epidemic period of each year. Panel A of Figure 3 
shows the clinical match rate for each season. To define the clinical match rate, I 
use strain isolation data from the PHAC along with reports on the cross-immunity 
of the yearly vaccine. All influenza strains observed by the PHAC are identified as 
matched or not matched to the yearly vaccine by using the reports published each 
year in the Canadian Communicable Disease Report (CCDR).22

Comparing panels A and B, the pattern between the vaccine match and influenza 
demonstrates higher peaks of laboratory confirmed influenza in seasons with a mis-
match. Overall, across province and week, the estimated effect of the clinical match 
rate on the laboratory confirmed surveillance rate is −0.010 (s.e. 0.004), which 
is composed of an effect of −0.097 (s.e. 0.021) during the epidemic-period and 
−0.001 (s.e. 0.002) during the off epidemic-period.23 The average clinical match 
rate is 0.71 and the average surveillance rate is 0.218 during the epidemic period 

21 The epidemic period is given as the contained set of weeks starting from the first week the number of positive 
influenza tests is greater than 5 percent of the season total until the last week it falls below 5 percent. Results are 
similar to defining the influenza period as any week with positive surveillance tests.

22 These findings correspond to reports made by the CDC and the vaccine recipe from the WHO.
23 These results employ the panel of surveillance data for week and province. Here, standard errors are clustered 

by province.
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(0.024 during the off period). This implies that, during the epidemic period and 
relative to an average match, a perfect clinical match will result in a 2.8 percentage 
point decrease in the surveillance rate (or a 13 percent decrease from the mean).24

24 Similarly, the match rate, itself, is directly related to the health outcomes studied below. For instance, the 
simple match effect (i.e., regression of outcomes on the match rate) is a decrease of 0.16 percentage points for work 
absences, 22.4 percent for influenza admissions and 12.7 percent for influenza-pnuemonia admissions (all statisti-
cally significant at the 5 percent level).
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C. Health Outcomes

Data on health outcomes is gathered from hospital administrative records and 
monthly labor force surveys. Hospital records are obtained from the Hospital 
Morbidity Database (HMDB) holdings of the Canadian Institute for Health 
Information. The HMDB includes complete records of inpatient discharges for hos-
pitals in Canada.25 Each discharge abstract consists of information on patient age, 
sex, and home postal code, as well as detailed medical information including: date 
of hospital admittance and discharge, discharge disposition (i.e., living or deceased), 
and detailed diagnosis information. Each abstract reports one diagnosis labeled the 
most responsible diagnosis (MRD) and up to 15 co-diagnoses.

The HMDB is used to construct weekly hospitalization rates for economic regions 
in Canada. Each economic region (ER) is a standard geographic region defined by 
Statistics Canada and made up of a group of adjacent census divisions meant to charac-
terize regional economic activity. Focusing on ERs as opposed to census metropolitan 
areas (CMAs) has the advantage of covering the entire Canadian geography, both within 
and surrounding CMAs. Furthermore, it allows for control of fixed unobservable differ-
ences between well-defined regions, where region boundaries are set to capture local-
ized economic activity (and likely tracking patterns of influenza transmission). Illness 
measures are assigned to each of 49 ERs based on patient postal code of residence.

Additionally, the monthly Labor Force Survey (LFS) is used to investigate effects 
for labor productivity. The LFS collects monthly information on demographic 
and labor market variables for household members 15 years of age and older. 
Demographic characteristics include age, sex, marital status, educational attain-
ment, and family characteristics, and labor force characteristics including employ-
ment information, such as usual hours of work, and work absences in a reference 
week. Work absences are defined as “due to own illness.”

Individual characteristics for work absences and hospitalizations are summarized in 
Table 3. The table shows that, among workers, those who report an absence in a given 
week are comparable to workers who do not report an absence (those reporting an 
absence are only slightly older and more likely to be female). Among hospital admis-
sions (which, unlike the working population, represents the full age distribution), 
influenza admissions are more likely young and female compared to nonrespiratory 
admissions, while pneumonia admissions (a common complication of influenza and 
potential substitute diagnosis) are more likely older and male. Whereas influenza hos-
pitalizations are shorter than nonrespiratory admissions, pneumonia admissions are 
of longer duration (likely reflecting respiratory infections of a more serious nature). 
Pneumonia admissions are also more likely to occur among residents of a residential 
care facility and end in death (the in-hospital death rate is 14.1 percent).

Weekly rates of illness are summarized in Table 4. On any given week, almost 
5  percent of the labor force is absent from work for illness. The weekly rate of 
influenza is 0.4 per 100,000, but this average masks the degree of within season 
variation in this type of admission (within season variation is explored in what 

25 Hospitals in Quebec and non-Winnipeg Manitoba started submitting to the HMDB after 2001 and are conse-
quently excluded from the analysis.
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Table 3— Summary Statistics–Individual Characteristics

Labor force absence Hospital admission

Absence No absence Influenza Pneumonia 
All

respiratory
Non-

respiratory

Age 41.914 41.614 51.185 61.419 55.136 58.321
(0.0015) (0.0003) (0.158) (0.029) (0.017) (0.009)

Fraction male 0.494 0.594 0.440 0.535 0.529 0.518
 (0.0001) (0.0000) (0.002) (0.001) (0.000) (0.000)
Duration 10.884 6.871 12.187 9.860 8.841

(0.0012) (0.083) (0.024) (0.012) (0.007)
Wait time in ER 4.969 5.251 5.188 4.834

(0.056) (0.010) (0.006) (0.004)
Fraction with death 0.032 0.141 0.091 0.044

(0.001) (0.000) (0.000) (0.000)
Care home resident 0.058 0.099 0.063 0.038

(0.001) (0.000) (0.000) (0.000)
Urban postal code 0.775 0.862 0.856 0.868
 (0.002) (0.000) (0.000) (0.000)

Observations 239,927 5,138,743 40,213 987,710 3,143,365 6,463,446

Notes: Variable means displayed with standard error of the mean given in parentheses below. Here, absence indi-
cates a short-term work absence during the reference week. Nonrespiratory diagnoses include all hospitalizations 
that do not list a respiratory diagnosis as either an MRD (most responsible diagnosis) or as a contributing diagnosis. 
Duration is measured in hours for work absence and in days for hospital admissions. Wait time in ER (emergency 
room) before admission is measured in hours. Statistics from the LFS are weighted by survey weights.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.

Table 4 —Comparison of Illness Post-UIIC across High and Low Match Influenza Seasons

Overall 
illness 

rate

Post-UIIC effect
Difference in

Post-UIIC effect 

Full sample Low match High match High vs. low match

Work absence (× 100) 4.47 0.155** 0.388*** 0.018 −0.370**
(0.057) (0.109) (0.156) (0.137)

ln(Influenza) 0.35 0.152* 0.243** −0.092 −0.334***
(0.079) (0.104) (0.066) (0.091)

ln(FP) 8.62 −0.032 0.032 −0.078** −0.110*
(0.037) (0.059) (0.035) (0.058)

ln(Respiratory) 26.18 −0.087  −0.042 −0.124** −0.082
(0.057) (0.075) (0.051) (0.050)

ln(Nonrespiratory) 53.60 −0.083  −0.072 −0.068  0.004
(0.054) (0.071) (0.042) (0.041)

Notes: Differences in means are displayed for each variable with standard errors of each estimate given in parenthe-
ses below. All standard errors are clustered by region. The first column displays average illness rates for each vari-
able (where HMDB admission rates are expressed as admissions counts per 100,000 population). Columns under 
the heading “Post-UIIC” display difference-in-differences estimates for each variable post September 2000 in UIIC 
regions. The final column displays the triple difference estimate of the Post-UIIC effect over seasons with a high 
match compared to low match. Work absence indicates a short-term work absence during the reference week, where 
estimates are multiplied by 100. Hospitalization data are expressed as the natural log of admission counts per week, 
per region. Statistics are weighted by survey weights in the case of the LFS, and population counts per year, per 
region in the case of the HMDB.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.
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 follows). Expanding the diagnosis code to include potential substitute codes, the 
tables show average rates of 8.6 for influenza and pneumonia (FP) admissions and 
26.2 for respiratory admissions. This compares to a rate of 53.6 for nonrespiratory 
admissions (these type of admission do not list a respiratory diagnosis any where on 
the discharge abstract).

To provide a preliminary understanding of the impact of the UIIC program, the 
table also breaks out the difference in illness for UIIC regions in the post period. 
In the absence of other differential factors in illness, this relative difference will 
reflect the true effect of the UIIC program. From Table 4 and with this  interpretation 
in mind, we would conclude that the UIIC program led to increases in work 
absences and influenza admissions, while at the same time leading to decreases 
in both respiratory and nonrespiratory admissions, where the decreases in respira-
tory and nonrespiratory admissions are of comparable size, around 8 percent. What 
this interpretation ignores, however, is differential changes in other factors, such as 
labor conditions, the supply of hospital services, or diagnosis coding. In fact, when 
combining both influenza and pneumonia admissions there is a decrease in admits, 
which runs counter to the increase found for influenza alone and may partly reflect 
a higher likelihood of reporting a diagnosis of influenza versus pneumonia in post 
program UIIC regions.

To reconcile these results, the next two columns of Table 4 report post-UIIC esti-
mates for high match seasons versus low match seasons, and the fourth column 
reports the difference in these estimates. The results indicate that high match sea-
sons (i.e., a clinical match rate of one) are systematically associated with differential 
gains in respiratory health for UIIC regions in the post program period. For instance, 
overall there is an 8 percent relative decrease among all respiratory admissions in 
UIIC regions, but breaking this out over high and low match seasons shows that the 
decrease in admissions is primarily delivered in high match seasons. On the other 
hand, there is also an 8 percent relative decrease among nonrespiratory admissions 
in UIIC regions, but there is little difference in the decrease for seasons with a high 
clinical match versus those with a low clinical match.

IV. Results

A. Main Results

Summary evidence indicates that the clinical match rate is related to patterns 
of respiratory illness and suggests that this relationship operates through changes 
in vaccination programming. To present a more compelling case, the following 
will show the change in the effect of the vaccine match over different periods 
throughout the year. If a change in the effect of the match is related to vaccination 
and  respiratory health, we would expect post-UIIC regions to have higher gains 
in high match years and, further, that these gains would be delivered in the typical 
epidemic period.

The results in Table 5 support both claims. First, over the entire year, UIIC regions 
have significantly lower illness rates in good match seasons following the vaccina-
tion program. Alternatively, non-UIIC regions have little difference in illness rates 
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Table 5—Change in Post-Match Effect across Region and Month

Overall 
illness 

rate

Post-match effect
Difference in 

post-match effectUIIC regions non-UIIC regions

Work absence (× 100)
 All months 4.47 −0.355

(0.129)**
0.014

(0.064)
 −0.370
(0.137)**

 Sep-Oct-Nov 3.76 −0.373
(0.083)***

−0.192
(0.070)**

−0.181
(0.105)*

 Dec-Jan-Feb 5.11 −0.573
(0.185)**

0.101
(0.146)

−0.674
(0.227)***

 Mar-Apr-May 4.97 −0.243
(0.174) 

0.210
(0.190)

−0.452
(0.250)*

 Jun-Jul-Aug 4.03 −0.044
(0.182)

−0.052
(0.128)

 0.008
(0.213) 

ln(Influenza)
All months 0.35 −0.416

(0.073)***
−0.081
(0.061)

 −0.334
(0.091)***

Sep-Oct-Nov 0.19 −0.318
(0.087)**

−0.726
(0.194)***

0.408
(0.209)*

Dec-Jan-Feb 0.79 −0.461
(0.063)***

−0.161
(0.125)

−0.300
(0.137)**

Mar-Apr-May 0.29 −0.498
(0.152)**

0.927
(0.103)***

−1.424
(0.176)***

Jun-Jul-Aug 0.08 0.227
(0.045)***

0.075
(0.049)

0.152
(0.065)**

ln(Influenza + Pneumonia)
All months 8.62 −0.083

(0.024)**
0.026

(0.054)
 −0.110
(0.058)*

Sep-Oct-Nov 7.71 −0.107
(0.034)**

−0.115
(0.070)

0.008
(0.076) 

Dec-Jan-Feb 11.10 −0.115
(0.023)***

−0.020
(0.049)

−0.096
(0.054)*

Mar-Apr-May 9.01 −0.025
(0.034)

 0.205
(0.066)***

−0.229
(0.073)***

Jun-Jul-Aug 6.41 −0.029
(0.022)

 0.091
(0.079)

−0.120
(0.081) 

Notes: Differences in means are displayed for the full season and for four periods running from the season start in 
September. Typical epidemic timing occurs around the season mid-point in February (see Figure 3). Standard errors 
are given in parentheses to the right of each estimate and are clustered by region. The first column displays average 
illness rates (where HMDB admission rates are expressed as admissions counts per 100,000 population). Columns 
under the heading “Post-match effect” display difference-in-differences estimates for high match-post September 
2000 seasons (i.e., a high match indicates a clinical match of 1). The final column displays the triple difference esti-
mate of the post-match effect over UIIC regions compared to non-UIIC regions. Work absence indicates a short-
term work absence during the reference week (estimates are multiplied by 100). Hospitalization data are expressed 
as the natural log of admission counts per week, per region. Statistics are weighted by survey weights in the case of 
the LFS, and population counts per year, per region in the case of the HMDB.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.
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across good and bad match seasons in the post program period.26 Second, these 
gains are delivered during the typical epidemic period (i.e., in the season running 
September to September, laboratory surveillance is typically elevated around the 
mid-season mark in February (see Figure 3), as are work absences and respiratory 
admissions (see Table 5)). Looking at work absences in UIIC regions, there is a 
post-program gain in the effect of the match of 0.37 percentage points in the first 
three months of the season, followed by a larger gain of 0.57 corresponding to the 
typical epidemic peak period. The size of the gain falls in magnitude and statistical 
significance in the March to May period, and, finally, there is a small and insignifi-
cant effect in the summer months. Meanwhile, non-UIIC regions experience an aver-
age 0.19 percentage point gain in the first three months of the season, but estimates 
throughout the rest of the year indicate that this represents a zero-sum displacement 
of work absences over the season (i.e., overall illness does not change, but the epi-
demic period appears later in the year). These same patterns are apparent for hospi-
tal admissions. Here, for UIIC regions, high match seasons deliver larger gains post 
program, and these gains are largest in the typical epidemic period. Alternatively, for 
non-UIIC regions, high match seasons do not deliver overall postprogram gains but 
tend to displace admissions from the early part of the season to later months.

Considered separately, the estimates displayed for UIIC and non-UIIC regions 
cannot disentangle the effect of vaccination from a change in the direct effect of 
the clinical match over time (e.g., the results cannot refute that unmatched strains 
are more “severe” in later years leading to even higher rates of illness in low match 
years in the post period). In order to isolate the effect of the vaccination program, 
the third set of results in Table 5 compares the post-match effect across UIIC and 
non-UIIC regions (here the vaccine is identical across region, but vaccination rates 
are not). Results indicate that post program gains in the effect of a high match are 
significantly higher for UIIC regions, and, further, these gains are largest in the mid-
season period.27

While these figures show compelling patterns in the effect of vaccine quality 
over the year, health outcomes can be more flexibly modeled using equation (2), 
which fully exploits variability in the match rate across season and province, con-
trols for other time-region varying factors in X, and is adjusted to capture differences 
in the timing of the flu epidemic year-to-year. Further, the estimation design can be 
 modified to test the sensitivity of results to changes in compensatory behaviors by 
controlling for circulation of other infectious disease. Of interest is the coefficient 
on UIIC × Post × M, the program match effect, which gives the relative difference 
in health outcomes for higher match seasons in post program UIIC regions.

Estimates for equation (2) are shown in Table 6 and, overall, this evidence high-
lights the following two results. First, program-related health improvements are 

26 For instance, for work absences, the post-match estimate for UIIC regions is a statistically significant change 
of −0.36 percentage points, which means that in post 2000 a high match is associated with relatively lower levels of 
work absence. For non-UIIC regions, the estimate for work absences is an insignificant change of 0.01. For hospital 
admissions, UIIC regions experience a statistically significant change in influenza and combined influenza and 
pneumonia of −41.6 and −8.3 percent respectively, whereas non-UIIC regions experience an insignificant change 
of −8.1 and 2.6 percent respectively.

27 The timing of the season does shift somewhat from year to year (see Figure 3), a feature that is explored 
explicitly below.
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delivered primarily in the epidemic period.28 For instance, higher matches in post 
program UIIC regions deliver statistically significant decreases in work absences 
and respiratory admissions in the epidemic period, whereas there is little differ-
ence in all illness outcomes in the off-epidemic period.29 Second, there is little 
 difference in point estimates (in magnitude and significance) after controlling for 
other infectious respiratory disease (i.e., respiratory syncytial virus, parainfluenza, 

28 This pattern in results is not by design. Unless vaccination is a mitigating factor, there are few reasons why 
program-match estimates for absences and admissions should systematically follow the surveillance patterns of 
laboratory influenza counts.

29 Since the log specification drops weeks without admissions, the results for influenza admission in the off-epi-
demic period do not include the full set of weeks. However, an alternative specification using influenza  admission 
rates on the left-hand side and including all 0’s shows similar results. There is a small and insignificant effect in the 
off-epidemic period of −0.006 per 100,000. In the case of combined influenza and pneumonia admissions, there 
are no weeks with zero admissions.

Table 6—The Flu Immunization Campaign, Vaccine Match, and Health Outcomes

Dependent 
variables

Average 
duration

Work absence
(× 100) ln(influenza)

ln(influenza
+ pneumonia)

(1) (2) (3) (4)

Panel A. Base results
Epidemic-period 12 weeks −0.522** −0.949*** −0.486***

(0.21) (0.26) (0.07)
 Baseline rate 4.56 2.96 16.05

Off-period 40 weeks −0.103  0.021  −0.056 
(0.38) (0.11) (0.05)

 Baseline rate 3.55 0.19 7.69

Panel B. Account for behavioral response to match by controlling for circulation of other infectious disease
Epidemic-period −0.629*** −0.914*** −0.476***

(0.24) (0.26) (0.07)
Off-period −0.136  0.020 −0.054

(0.11) (0.11) (0.05)

Notes: This table reports estimates of the interaction of the clinical match rate, a dummy for post September 2000, 
and a dummy for UIIC regions. Table columns report results for different health outcomes and rows report results 
for two different periods in the year: the epidemic-period and the off-period. Column 1 shows the average duration 
of each period. Work absence indicates a short-term work absence during the reference week (estimates are multi-
plied by 100). Hospitalization data are expressed as the natural log of admission counts per week, per region. Each 
estimate shown in columns 2 to 4 is from a separate regression. Standard errors are given in parentheses and are 
clustered by region. In panel A, baseline illness rates (i.e., rates for preprogram UIIC) are reported below the stan-
dard errors (where HMDB admission rates are expressed as admission counts per 100,000 population). Statistics 
are weighted by survey weights in the case of the LFS, and population counts per year, per region in the case of the 
HMDB. All regressions include the level effect of the match rate, month, age, season and economic-region fixed 
effects as well as interactions of UIIC×Post, Post×Match, and UIIC×Match. Regressions in columns 3 and 4 also 
control for public health expenditures on health care (hospitals, capital investments, physicians and other health 
professionals), and diagnosis specific coding classifications changes (ICD10 versus ICD9). Regressions in col-
umn 1 control for the same factors, and for education, marital status, sex, occupation and union status. Results in 
panel B control for surveillance rates of other infectious respiratory disease (respiratory syncytial virus, parainflu-
enza, and adenovirus).

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.
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and adenovirus).30 If compensatory behaviors (related to the match rate and post 
program UIIC) impact influenza circulation, then this should also relate to circula-
tion of other infectious disease. However, controlling explicitly for circulation of 
these diseases leaves point estimates largely unchanged.

The magnitude of results points to large program effects during the epidemic-
period. For instance, for work absences, the coefficient on UIIC × Post × M is 
−0.6 percentage points (a 14 percent decrease from the baseline mean or six less 
absences per 1,000 workers, per week).31 The implications for decreases in underly-
ing influenza infections are most readily seen from the results on influenza admis-
sions, where there is a 91 percent decrease arising from a high match under the UIIC 
program. Unless these results reflect large changes in the probability of hospitaliza-
tion conditional on infection or changes in in-hospital diagnosis coding for influ-
enza, they indicate near elimination of influenza infections at the population level in 
post program-high match seasons.

The next column expands the chosen diagnosis code to include pneumonia (a 
common complication of influenza and a potential substitute diagnosis). This both 
captures any underlying influenza-associated pneumonia diagnoses and, by compar-
ing the magnitude of results, can shed light on whether the large effects results for 
influenza admissions are a feature of changes in diagnosis coding. Overall, estimates 
show a 48 percent decrease in FP admissions (implying a savings of 8.6 admissions 
per 100,000 per week or a fall of 2.5 admissions going from the average match, 
71 percent, to a perfect match).

In order to compare these estimates to those for influenza admissions and to 
get a sense of what they imply for infection at the population level, the FP results 
need to be scaled to account for fact that not all FP admissions are due to influenza 
infection. While the proportion of infection-associated FP admissions is unknown, 
it can be approximated by comparing FP admits across off-epidemic and epidemic 
periods. For instance, off-epidemic FP admission rates are half that of epidemic 
rates at baseline. Similarly, the size of the program match effect in the epidemic 
period is a decrease of almost half. These results indicate that an excellent match 
under the UIIC program leads to near elimination of influenza associated FP 
admissions. Explicitly, using the relative difference in average FP rates reported 
in Table 6 as a scale factor, these results suggest a 92 percent decrease in influenza 
infection in the underlying population (comparable to the effect found for influ-
enza admissions).32

30 These diseases are nonvaccine preventable respiratory viruses that are infectious through the same manner as 
influenza and present with similar symptoms.

31 Similar results arise for other health outcomes in the NPHS and CCHS health survey data. For instance, dur-
ing the epidemic period, the program match effect for cold/flu medications is a decrease of 10.2 percentage points 
or a 13 percent decrease from the mean (interestingly, there is no impact on the use of antibiotics). Secondly, over 
the full sample, there is a 3.0 percentage point fall in the rate of being in bed ill. In contrast, the effect for workers 
is 0.6 percentage points, which is very similar to the effect found for absences in the LFS survey results in Table 6.

32 This statement assumes, first, that the probability of hospital admission conditional on illness (either influ-
enza or other) is not sensitive to the program match effect and, second, that the comparison between epidemic and 
off-epidemic rates is a good approximation of the relative rate of influenza infections for a given set of diagnosis 
codes. In support of these assumptions, evidence on nonrespiratory admits indicates little sensitivity to program 
match effect, and the “rates approximation” is likely not unreasonable given that the set of FP codes are still 
 narrowly focused around influenza and the epidemic period is defined by positive influenza surveillance. Under 
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Table 7 shows that the program match effect on work absences is mainly due 
to decreased absences rather than due to shorter hours spent ill per illness (in fact, 
hours spent per absence are slightly elevated in post-UIIC-match). Furthermore, 
the decrease in the number of hospital days is mainly due to fewer hospitalizations 
since average hospital length of stay increased only marginally (e.g., length of stay 
increased by 7 percent for FP, whereas overall hospital days fell by 35 percent). 
Lastly, there are large effects for death from FP; a high match after the  immunization 

these assumptions, we can benchmark the effect for infection in the population. Here, the percent change in the 
influenza infection rate arising from the program match effect will be equivalent to the percent change in hospital 
admission scaled by the inverse ratio of the probability of admission with infection to the probability of admission. 
For FP diagnoses, under the rates approximation, this is equivalent to −0.48 × 16.05/(16.05 − 7.69) = −0.92.

Table 7— The Influenza Immunization Campaign, Vaccine Match, and Time Lost to Illness

Dependent variables Work absence ln(influenza) ln(influenza +pneumonia)
(1) (2) (3)

Panel A. Total time lost (hours absent per respondent/total hospital days per region-week)
Epidemic-period −0.046** −0.901** −0.349***

(0.02) (0.42) (0.12)
 Baseline rate 0.38 18.26 171.92

Off-period −0.013 0.044 −0.005 
(0.03) (0.21) (0.06)

 Baseline rate 0.26 1.66 98.52

Panel B. Time lost per illness (hours absent per absence/hospital days per admission)
Epidemic-period 0.240 −0.066 0.067*

(0.64) (0.07) (0.03)
 Baseline rate 11.66 7.11 10.71

Off-period −0.447  −0.058  0.033 
(0.32) (0.10) (0.02)

 Baseline rate 11.28 6.94 12.21

Panel C. Deaths per region-week
Epidemic-period −0.386***

(0.12)
 Baseline rate 1.91

Off-period −0.016 
(0.06)

 Baseline rate 1.13

Notes: See Table 6 notes. Table rows report results for time lost due to illness for each of the heath outcomes listed 
in the table headings. The duration of work absences is given in hours and is collected from the LFS. In this case, 
panel A presents results for hours absent over the full sample, whereas panel B presents the results for hours absent 
conditional on reporting a work absence. The duration of hospital admissions is given in days and is collected from 
the HMDB. In this case, panel A presents results for the log number of hospital days in each region-week (with 
average rates given in hospital days per 100,000), and panel B presents results for the log number of hospital days 
per admission (with average rates given in hospital days per admission). Finally, panel C presents results for the log 
number of deaths in each region-week (with average rates given in deaths per 100,000). There are too few influenza 
deaths to present results for log influenza deaths.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.
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program reduced deaths by 39 percent. This represents a gain of almost 9 fewer 
deaths per 100,000 over the epidemic period.

B. Impact on Respiratory versus Nonrespiratory Admissions

Influenza infection may lead to further health complications for those in poor 
health or with preexisting conditions (e.g., chronic respiratory disease, heart dis-
ease, cancer, or nervous system diseases). To analyze the impact of the vaccine 
program on related co-morbidities, Table 8 shows results for all admissions where a 
respiratory diagnosis is listed as either the most responsible cause (MRD) or as an 
additional co-diagnosis. This has the advantage of not only capturing MRD respi-
ratory diagnoses but also capturing MRD diagnoses for other conditions that are 
present with related respiratory complications. For comparison, the table also shows 
results for admissions where no related respiratory diagnosis is listed.

In the epidemic period, respiratory complaints comprise a large proportion of 
overall admissions. For instance, considering the baseline rates in Table 8, almost 
40 percent of total admissions include respiratory as a contributory or MRD diagno-
sis (25 percent when considering only MRD respiratory). Comparing average admis-
sion rates across the epidemic and off-epidemic periods, the seasonal aspects of 
respiratory disease also become apparent. In the off-epidemic period MRD respira-
tory admits are 39.0 percent lower, and co respiratory/MRD admits are 26.3  percent 
lower. Meanwhile, nonrespiratory admits differ by only 0.3 percent in the epidemic 
versus off-epidemic period. In total, hospital admissions are 10.1 percent lower in 
the off-epidemic period.

Evidence points to large effects of the UIIC campaign in the epidemic period. 
The post-UIIC-match effect estimates a 36.6 percent reduction in MRD  respiratory 
admissions and a 26.1  percent reduction in co-respiratory/MRD admissions 
( essentially equivalent to the difference in admission rates between the epidemic 

Table 8— The Influenza Immunization Campaign, Vaccine Match, and Respiratory  
versus Non-Respiratory Admissions

log number of
admissions by 
type of diagnosis

MRD 
respiratory 

disease

Codiagnosis 
or MRD 

respiratory disease

No diagnosis
of respiratory

disease
All 

diagnoses

Epidemic-period −0.366*** −0.261*** 0.038 −0.088***
(0.05) (0.04) (0.02) (0.02)

Baseline rate 23.80 36.73 56.86 93.59

Off-period −0.044 −0.033 0.029 0.010 
(0.04) (0.04) (0.02) (0.02)

Baseline rate 14.49 27.08 57.03 84.10

Notes: See Table 6 notes. Hospital admissions are divided by whether a respiratory diagnosis is listed on the hos-
pital abstract record (i.e., as “most responsible” or as a codiagnosis). Results for each category are presented using 
the log number of admissions in each region-week (with average rates reported below standard errors and given in 
admissions per 100,000).

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.

Source: Author calculations and hospitalization data from the HMDB.
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and off-epidemic periods). Meanwhile, the program appears to have little effect on 
respiratory admits in the off-epidemic period, and little effect for nonrespiratory 
admits in any period. These results provide further support that findings are not 
explained by alternative factors related to health outcomes, since such factors (i.e., 
correlated with the vaccine match and specific to the time and place of the immu-
nization program) would likely manifest in measures of health across the board. 
Conversely, the evidence shown here indicates that the impact of the program is spe-
cific to respiratory complications and moreover, follows the timing of the  seasonal 
epidemic.33

Considering total admissions, the estimated program match effect is an 8.8 per-
cent decrease. Considering off-epidemic admissions rates as a baseline for “non-
epidemic” rates, the size of this estimate implies that the program combined with 
a high match largely eliminates influenza-associated admissions and, assuming no 
change in the probability admission conditional on illness (i.e., no crowd-out or 
crowd-in effect), suggests a 87  percent reduction in the probability of influenza 
infection at the population level.34 Adjusting for crowd-in among nonrespiratory 
admission yields a benchmark of 95 percent (similar to the benchmark found using 
the results for FP admissions).35

C. Impact by Age and Externality Effects for Older Adults

The UIIC program led to a change in vaccine coverage for those under age 65 
and, as shown in Figure 4, increases in vaccination post program center on this age 
group. While difference-in-differences estimates for age groups 65+ show little 
increase in vaccination (even slight decreases past age 70), the relative increases in 
vaccination among younger groups are on the order of 10 percentage points.

The bottom panel of Figure 4 compares changes in vaccination with the rela-
tive percent decrease in FP admissions in post UIIC high match years.36 The largest 
decreases are among the very young (under ten); high school and college age; and 
prime age individuals age 45–55. Notably, however, there are sustained decreases 
in FP admissions in the 65+ group even though there is no matching increase in 
vaccination. Assuming this age group is unaffected by the vaccination of others, 
we would expect program benefits for ages 65+ to be close to zero.37 However, 

33 The evidence on nonrespiratory admits also shows that there is little evidence of significant “crowd in” at the 
extensive margin among other disease admissions.

34 This benchmark is calculated in the same manner as the benchmark found for FP admissions:
−0.088 × (93.59/(93.59 − 84.10)) = 87 percent.
35 The “crowd in” effect for nonrespiratory admits is small and statistically indistinguishable from zero, but 

since the point estimates are positive, adjusting for changes in the probability of admission given a nonrespiratory 
illness would only strengthen the evidence for large decreases in influenza. This is because the percent change in 
overall admissions would need to be adjusted downward to account for size of the crowd in effect. For instance, the 
relative increase in nonrespiratory admissions in the epidemic period is 0.9 percent and the ratio noninfluenza to 
influenza admissions can be approximated using the baseline rates in Table 8: (56.89 + 27.08)/(36.73 − 27.08). 
The leads to a scaled adjustment of 8 percent, or, in other words, the estimated reduction in influenza infections 
would be 87 + 8 = 95 percent.

36 Since point estimates for the off-epidemic period are small and statistically insignificant, only estimates for 
the epidemic period are displayed in Figure 4.

37 For instance, under this “no externalities” assumption we would expect the relative change in admissions 
to match the relative change in vaccination (the latter of which is zero for older groups). An alternative argument 
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the  evidence indicates that those 65+ benefit from changes in vaccination among 
younger groups; even where relative vaccination levels for older age groups have 
marginally decreased, there are still large program benefits. Furthermore, these 
external benefits appear in spite of higher baseline vaccination levels among UIIC 

is that since baseline rates of vaccination among older groups are already quite high, this leaves little scope for 
improvement among those older than 65 (both in relative and absolute terms). In either case, the data refute both 
hypotheses. Furthermore, evidence indicates that effectiveness of the vaccine among older groups is low (the lead-
ing explanation being poorer immune response among older groups; see, for instance Fiore et al. 2010 or Jefferson 
et al. 2007), which leaves further scope for improvement, by external means, even at high baseline levels.
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Figure 4. Post-UIIC Change in Vaccination and Program Match Effect for FP Admissions

Notes: The top figure plots the relative change in vaccination rates postprogram in UIIC regions (i.e., difference-
in-differences estimates) by age group (dark line). For comparison, baseline vaccination rates (i.e., preprogram 
UIIC rates) are also given (light line). The bottom figure (left axis) plots the age specific coefficients on the pro-
gram match effect (the interaction of the clinical match rate, a post-September 2000 dummy and a dummy for UIIC 
regions) for influenza and pneumonia admissions during the epidemic period (given as percent decrease). For com-
parison, the light blue line (right axis) shows baseline FP admission rates (per 100,000 per week).
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regions (i.e., under decreasing returns to vaccination this would suggest negative 
relative benefits).38

D. Benchmarking Averted Influenza Infections

Extending this analysis to calculate total benefits in terms of averted infections 
requires further information about how the probability of hospital admission relates 
to influenza infection in the population. Unfortunately, such information is unob-
served in the data. However, as before, we can benchmark this effect under the 
following two conditions: the rate of admission conditional on illness (influenza or 
otherwise) is not sensitive to the program match effect, and the difference between 
baseline epidemic and off-epidemic rates is a good approximation of the proportion 
of influenza-associated admissions.39

Using these conditions and starting with the estimates for all age groups, we can 
compare the inferred decrease in influenza infection to the change in the vaccinated 
population. First, note that if there is no difference in the probability of infection for 
remaining unvaccinated individuals (i.e., no externality or selection effects), then 
the overall probability of infection should fall only because more unvaccinated indi-
viduals are now vaccinated. In this case, (and assuming a matched vaccine) the per-
cent change in the infection rate should equal, not exceed, the percent change in 
the size of the unvaccinated group.40 However, evidence for the case of a matched 
vaccine suggests a decrease in the infection rate of 92 percent, which is much larger 
that the 11 percent decrease in the size of the unvaccinated group.41

38 For instance, if there is decreasing returns to vaccination, then, given baseline levels, separate groups may 
experience similar increases in vaccination but expect different gains in health. Since baseline vaccination levels for 
older adults are higher in UIIC regions, then, under decreasing returns, this should lead to smaller relative gains. 
On the other hand, estimates point to larger relative gains for older adults in UIIC regions, indicating substantial 
external benefits from increased vaccination in younger groups. The role for decreasing returns to vaccination is 
explored further in the next section.

39 The direction of the program match effect for admissions conditional on illness (i.e., the crowd in effect) is 
likely zero or positive, in which case the benchmark estimate will be a lower bound on the size of the effect. In 
fact, the program match effect for nonrespiratory indicates a small and statistically insignificant change in admis-
sions rates. Extrapolating from here, it is likely that there is little or no change in the rate of “crowd in” for the 
more narrowly defined set of FP codes. In terms of the proportion of influenza-associated FP admissions, the rates 
approximation is likely reasonable given that the set of FP codes is still largely focused around influenza and that 
the epidemic period is defined by positive influenza surveillance.

40 To see this, consider a simplified framework where the influenza infection rate can be written as a weighted 
average of the conditional infection rate for vaccinated and unvaccinated groups. If the vaccine is perfectly protec-
tive of the vaccinated group, then the infection rate is equivalent to the infection rate among the unvaccinated group 
multiplied by relative group size (this can be relaxed to the case of an imperfectly protective vaccine by modifying 
the size of the unvaccinated group by the degree of under-protection in the population and scaling estimates down 
accordingly). Take a change in the size of the unvaccinated group. If there is no difference in the probability of 
infection for remaining unvaccinated individuals, then the overall probability of infection will fall only because 
more unvaccinated individuals are now vaccinated (i.e., a composition effect). In this case, the percent change in the 
infection rate and the percent change in the size of the unvaccinated group should be comparable.

41 Since this considers the case of a matched vaccine, the benchmark estimate of the decrease in infection is based 
on the UIIC program effects for FP admissions under a clinical match rate of one (see Section IVA). Meanwhile, 
the estimate used for the decrease in the unvaccinated is calculated using the 9 percentage point decrease in the 
unvaccinated relative to the baseline of 79 percent in preprogram UIIC (see Table 2). This yields an 11 percent 
decrease in the size of the unvaccinated population. This stylized framework scales the difference in the protection 
rate between vaccinated and unvaccinated groups by the size of the match rate (given as the clinical match in the 
empirical work) and abstracts from any other differences in protection rates among vaccinated and unvaccinated 
groups (e.g., imperfect immune response among the vaccinated or partial immunity among the  unvaccinated). 



www.manaraa.com

VOL. 6 NO. 1 65WARD: INFLUENZA IMMUNIZATION CAMPAIGNS

Since the decrease in the unvaccinated population is not large enough to explain 
the large decreases in infection, this points to changes in infection rates for those with 
no change in vaccination behavior (either through externalities or through selection, 
the latter of which may arise when program-compliers have different baseline infec-
tion probabilities relative to non-compliers). Extant externality or selection effects 
are likely positive since a decrease in the size of the unvaccinated group likely 
decreases the spread of disease (externality effect), and those with higher chances 
of infection are likely the first to vaccinate (selection effect). Furthermore, the two 
effects need not be independent. Positive selection into vaccination could give rise 
to an “add on” externality effect if those with higher baseline rates of infection 
remove themselves first and therefore prevent the spread of disease at a higher rate.

Empirical evidence indicates the presence of one or both of these effects since 
the degree of averted infections is above and beyond what can be explained by the 
change in the size of the vaccinated population. Figure 5 provides further insight 
into these differences by making the same comparison over the age distribution. To 
see the extent of inferred excess benefits, the figure re-plots the change in FP admis-
sions, but adds the relative decrease in the unvaccinated group (calculated from 
the estimates in Figure 4, top panel) and the benchmarked decrease in influenza 
infections (calculated from the FP estimates and relative baseline rates in Figure 4, 
bottom panel). Here, for those over 65, it is possible to isolate the externality effect 
since there is no relative difference in vaccination and, thus, little scope for selec-
tion. The comparison shows external benefits for older adults benchmarked at about 
40 to 50 percent (i.e., comparing averted infections over decreases in the unvacci-
nated). Choosing an even more conservative scale factor, the externality effects are 
still apparent. For instance, under the assumption that 0 percent of FP admissions 
are due to other diseases (scale factor of one), the results show external benefits at a 
minimum of 20–30 percent.

Are large external benefits to older adults realistic in the face of already high vac-
cination rates? One interpretation of these results is that vaccination of the young 
yields higher returns when compared to the “own” effects of vaccination for this 
group. This accords with the medical literature, which indicates that effectiveness 
of the vaccine among older groups is low due to poorer immune response (Jefferson 
et al. 2007; Fiore et al. 2010) and provides support for policies aimed at vaccinating 
close contacts of care residents (Poland, Tosh, and Jacobson 2005).

Looking over the full age distribution, there are positive excess gains from the 
UIIC for all age groups. While the evidence for older adults indicates that exter-
nalities have a role to play, the results for those under 65 are a combination of both 
externalities and selection. Selection is a virtue of the UIIC anywhere that the change 
in behavior is more likely among those with higher relative rates of infection. Not 
only will this type of selection mechanically reduce the infection rate among those 
who remain unvaccinated, but it also leads to stronger externality effects if selection 

If there is differential protection among vaccinated and unvaccinated groups, this could lead to additional selection 
effects, the implications of which are discussed below.
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removes those who spread the disease at a higher rate.42 Finally, baseline levels of 
vaccination will inform the overall size of excess gains to the extent that there are 
decreasing returns to scale. In this case, the large estimated magnitude indicates that 
the change in vaccination in UIIC regions occurred at a key baseline starting point, 
a feature explored explicitly below.

E. The uiic and decreasing returns

Externalities have direct implications for the impact of vaccination if external spill-
overs eventually drive returns to zero. For instance, evidence based on approxima-
tions of the transmission rate and duration rate of influenza indicates that an infected 
individual mixing in a wholly unvaccinated population, would, on average, infect 1.44 

42 In light of the large externality effects found for those over 65, the externality effects among the young are 
likely nonzero. Moreover, the evidence provides a strong case against pure selection. For example, a pure selection 
effect of this size would follow if the change in vaccination occurred only among a small group of unvaccinated 
susceptibles (e.g., if only 10 percent are susceptible and only susceptibles choose to vaccinate, this would decrease 
the unprotected population by 0.09/0.10 = 90 percent). However, to the extent that individuals have imperfect 
information about their own susceptibility, it is unlikely that this behavior fully explains results. Furthermore, 
Table 2 shows limited differences in the relative change in vaccination by health status, which suggests, perhaps, a 
more limited scope for pure selection effects.
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Figure 5. Program Match Effect and Inferred Excess Benefits

notes: The bottom plot line gives the percent decrease in the unvaccinated population (the ratio of difference-in-
differences estimates to baseline rates for the unvaccinated (see Figure 4 top panel)). The middle line replots the 
age specific coefficients on the program match effect (the interaction of the clinical match rate, a post-September 
2000 dummy and a dummy for UIIC regions) for influenza and pneumonia admissions during the epidemic period 
(given as percent decrease). The top line plots the inferred decrease in influenza infections scaled from the esti-
mates for FP admissions (the ratio of FP estimates to the proportional difference between baseline epidemic and 
off-epidemic rates (see Figure 4 bottom panel)). The health surveys did not collect information on vaccination for 
those 11 and under.
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others before recovery (Hethcote 2000; Boulier, Datta, and Goldfarb 2007). Using this 
“contact rate” within a standard model of disease dynamics implies that a vaccination 
rate greater than 31 percent would reduce the average infection number to below one, 
(assuming a fully protective vaccine).43 Since an average infection rate below one will 
prevent an influenza epidemic (i.e., an infection less than replaces itself), it suggests 
that benefits from immunization beyond 31 percent would fall to zero.

The model described in Section IIA explores this possibility by allowing the 
program match effect to depend on baseline immunization levels. Results from this 
analysis are presented in Table 9, where panel A represents base results and panel B 
shows results allowing for the interaction of baseline immunization among regions. 
The results show that there are decreasing returns depending on baseline immuni-
zation starting points. Specifically, the results for UIIC × Post2000 × Match show 
the effect at average baseline levels across region, whereas the results for the base-
line interaction term indicate a decline in the impact of UIIC × Post2000 × Match 
at higher baseline rates. The baseline rates where the program match effect would 
be zero are shown at the bottom of the table.44 The numbers indicate that a region 
starting with vaccination rates around 32–35 percent, but receiving the same UIIC 
boost in vaccination, would enjoy little additional gain from a high match vaccine 
post program. On the other hand, based on the average starting point of 18 per-
cent, the expected effect of the program is large relative to baseline incidence 
rates,  indicating that the change in vaccination occurred at a highly effective point 
in the baseline distribution.

F. Estimated Benefits versus Program Costs

These results suggest that vaccination leads to substantial benefits in terms of 
hospitalization and lost work costs. For instance, estimates indicate that there is 
a 26  percent decrease in comorbidity/MRD respiratory hospitalizations, which 
implies a decrease of 9.6 respiratory hospitalizations per 100,000 per week dur-
ing the epidemic period. Over the population of Ontario, this is a savings of 1,245 
admissions per week. The length of the average epidemic period is 12 weeks and 
the cost of an average respiratory hospitalization is $8,629 (CIHI 2008). A back 
of the envelope calculation indicates a savings of $129 million when the match 
is high. Expected savings at the average match rate are $92 million. For illness 
absences, estimates indicate a 0.6  percentage point decrease in work absences. 
Over the working population of Ontario, this is a savings of 47,400 work absences 
per week during the epidemic period. At an average hourly wage of $18 and aver-
age absence duration of 10.9 hours this translates into $112 million in savings per 
season for Ontario in high match years (expected savings of $79 million). These 

43 This model is based on the Kermack and McKendrick Susceptible-Infective-Removed (SIR) model of disease 
epidemics. Several variations of the model are shown in Geoffard and Philipson (1997); Francis (1997, 2004); and 
Boulier, Datta, and Goldfarb (2007). Using the contact number of 1.44, the dynamics of this model imply that the 
average number of infections occurring from one infection will fall to one when at most 69 percent of the population 
is susceptible to influenza (i.e., 1.44 × 0.69 = 1). In other words, to prevent an epidemic, the SIR model implies 
that more than 31 percent of the population would need to be vaccinated (with a high match vaccine).

44 Using the parameters in equation (3), these rates are calculated by setting β1 + δ1 × ( preV − 0.182) equal to 
zero. This implies that the program match effect is zero when baseline rates equal: −β1/δ1 + 0.182.
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savings are less than  programming costs, which are an average $19 million in 
additional administration costs and an extra $14 million in vaccine costs for a total 
additional cost of $33 million per season.

V. Conclusion

This paper illustrates the role of externality effects in immunization behavior. 
Principally, where externalities exist, the limitations of previous evidence to address 
these externalities manifests along two dimensions: unaccounted spillovers in esti-
mation and failure to recognize systematic differences in overall benefits depend-
ing on the level and composition of local immunization. Evidence that overlooks 
these aspects can lead health authorities to set immunization policies well before 
full benefits are recouped, and, furthermore, to neglect the implications of policies 
set within the context of differing underlying immunization levels. For instance, 
previous literature indicates mixed evidence on the benefit of vaccinating younger 
adults, but largely ignores estimation spillovers and is silent on how benefits depend 
on local immunization levels and compositional take-up.

This paper addresses these aspects by studying a novel immunization pro-
gram expanding vaccination coverage outside the standard target group. Within 
this  context, evidence demonstrates significant overall and external gains of 
 immunization, and shows that these gains decline to exhaustion depending on local 

Table 9—Results Conditional on Baseline Vaccination Rates in Each Economic Region

Dependent variables
Work absence

(× 100) ln(influenza)
ln(influenza 

+pneumonia)
(1) (2) (3)

Panel A. Results for epidemic weeks
UIIC × Post × Match −0.629*** −0.914*** −0.476***

(0.24) (0.26) (0.07)

Panel B. Results for epidemic weeks conditional on baseline vaccination in each economic region
UIIC × Post × Match −0.712*** −0.816** −0.511***

(0.10) (0.38) (0.06)
UIIC × Post × Match × Baseline 5.145  4.978  3.544**
 vaccination† (3.69) (7.58) (1.68)
Baseline rate where program effect is zero 32.0% 34.6% 32.6%

Notes: See Table 6 notes. Panel A reports estimates of UIIC × Post × Match from equation (2) for all weeks dur-
ing influenza season. Panel B reports estimates of UIIC × Post × Match and an estimate of UIIC × Post × Match 
interacted with the demeaned baseline vaccination rate as specified in equation (3). In panel B, the baseline vacci-
nation rate displayed is the implied baseline rate at which the effect of the influenza program would be zero, given a 
perfect vaccine match. It is calculated as the baseline average vaccination rate plus the negative ratio of the two esti-
mates above the result. Table columns report results for different health outcomes. Work absence indicates a short-
term work absence during the reference week (estimates are multiplied by 100). Hospitalization data are expressed 
as the natural log of admission counts per week, per region. Standard errors are given in parentheses and are clus-
tered by region. Statistics are weighted by survey weights in the case of the LFS, and population counts per year, 
per region in the case of the HMDB.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
 † Baseline vaccination denotes the deviation of the rate for each region from the average baseline rate of 0.182.

Source: Author calculations, hospitalization data from the HMDB, and labor force data from the monthly LFS.
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immunization  levels. First, overall benefits under UIIC are substantial, centering 
primarily on children and older adults. Second, there is direct evidence of external 
benefits for those over 65 arising from increased vaccination of younger groups. In 
terms of the UIIC, the gains in vaccination occurred at the most effective range pos-
sible. Overall, vaccination rose from an average of 20.9 percent to 41.4 percent, and 
evidence suggests that gains from further increases in vaccination would be small.

Compositional effects in vaccine take-up are material to the interpretation of these 
results, and where selection exists, the implications of evidence acquired from random-
ized design may be limited, particularly where policy cannot easily replicate random 
assignment. Importantly, the nature of the UIIC program generates significant differ-
ences in take-up across age groups. This is partly by design, given previous immuniza-
tion policy for older groups, but is also apparent for those under 65. Selection of this 
nature has direct implications for overall expected benefits. For instance, holding the 
local vaccination rate constant, overall benefits may differ under scenarios where dif-
ferent groups are targeted or selection differs within group. Specifically, immunization 
policies, informed by previous evidence, focused on maximizing the immunization of 
those over the age of 65. The results presented here show that, even with immunization 
rates for older adults at levels in excess of 60 percent, there is still room for substan-
tial gains. Recognizing the role for externalities and selection in overall immunization 
benefits may shed light on the effectiveness of this particular policy target. In particu-
lar, evidence indicates that the UIIC program is an effective tool to deliver benefits to 
older adults, demonstrating that large gains accrue from: heterogeneity in the effect of 
immunization for younger groups, combined with further amplified external benefits 
delivered by younger groups. Importantly, since differences in cost effectiveness calcu-
lations between the young and the old may reflect, primarily, differences in treatment 
cost upon infection (which run opposite the immune protection afforded by the vac-
cine), ignoring external benefits delivered from young to old can severely undervalue 
the overall cost effectiveness of vaccination of the young.

Since the evidence presented demonstrates the important role of externalities 
in the expected impact of immunization programs, it suggests that future research 
might benefit from a more explicit approach to assessing the implications of these 
aspects, both in terms of estimation (i.e., addressing treatment spillovers) and in 
overall policy design (i.e., understanding how benefits depend on the local immuni-
zation rate and compositional take-up). In particular, the UIIC program is one that 
expanded recommendations and coverage outside the typical target group. Using this 
evidence, firms or governments may wish to reconsider these recommendations and 
the potential gains from providing coverage outside this target group. Furthermore, 
evidence presented is shown to depend on compositional take-up among younger 
groups, and external benefits delivered within the context of the local immunization 
rate. Within this policy context, results indicate that program expansion leads to 
substantial decreases in illness, which aside from direct and indirect benefits to indi-
viduals, delivers large relative cost savings to the publicly financed health care sys-
tem. Lastly, since results imply that high vaccination rates combined with a matched 
vaccine can lead to large gains, this may suggest a further advantage to developing 
seasonal infrastructure that can be relied upon in the case of a matched pandemic 
vaccine (for example, the 2009 H1N1 vaccine).
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